For full functionality of this site it is necessary to enable JavaScript. Here are the instructions how to enable JavaScript in your web browser.

# Secant modulus of elasticity of concrete at an age of t days, Ecm(t)

## Eurocode 2 part 1-1: Design of concrete structures \$(document).ready(function () { var freeExample = \$("#freeExample").length; \$("#mainMenu li#nav-appCate, #mainMenu li#nav-appEC211").addClass("active"); var proUser = false === true || false === true || freeExample !== 0; if (!proUser) { \$('#Input input').keyup(function(){ \$('#AlertSubscribe').modal(); }); \$('#Input select').change(function(){ \$('#AlertSubscribe').modal(); }); }; var tempInput = \$("#tempInput").text(); if (tempInput != "") { \$("#Input").parent("form").deserialize(tempInput); if (proUser) { \$("#acceptBtn").trigger("click"); } }; });  3.1.3 (3)

Variation of the modulus of elasticity with time can be estimated by:

 Ecm(t) = (fcm(t) / fcm)0,3 Ecm (3.5)

where:

Ecm(t)
is the secant modulus of elasticity of concrete at an age of t days
Ecm
is the secant modulus of elasticity of concrete at 28 days
fcm(t)
is the mean concrete compressive strength at an age t days
fcm
is the mean compressive strength at 28 days according to Table 3.1.

This application calculates the modulus of elasticity Ecm(t) from your inputs. Intermediate results will also be given.

Input
days

Output
Ecm
GPa
fcm
MPa
fcm(t)
MPa
the modulus of elasticity Ecm(t)
GPa (3.5)