For full functionality of this site it is necessary to enable JavaScript. Here are the instructions how to enable JavaScript in your web browser.

# Creep coefficient defining creep between times t and t0, φ(t,t0)

## Eurocode 2 part 1-1: Design of concrete structures \$(document).ready(function () { var freeExample = \$("#freeExample").length; \$("#mainMenu li#nav-appCate, #mainMenu li#nav-appEC211").addClass("active"); var proUser = false === true || false === true || freeExample !== 0; if (!proUser) { \$('#Input input').keyup(function(){ \$('#AlertSubscribe').modal(); }); \$('#Input select').change(function(){ \$('#AlertSubscribe').modal(); }); }; var tempInput = \$("#tempInput").text(); if (tempInput != "") { \$("#Input").parent("form").deserialize(tempInput); if (proUser) { \$("#acceptBtn").trigger("click"); } }; });  3.1.4 (2) and B.1 (1)

The creep coefficient φ(t,t0) may be calculated from:

 φ(t,t0) = Φ0⋅βc(t,t0) (B.1)

where:

Φ0
is the notional creep coefficient
βc(t,t0)
is a coefficient to describe the development of creep with time after loading.

This application calculates the creep coefficient φ(t,t0) from your inputs. Intermediate results will also be given.

Input
days
days
%
mm2
mm

Output
Mean compressive strength of concrete at 28 days fcm
MPa
Notional size of the member h0
mm (B.6)
α1
(B.8c)
α2
(B.8c)
α3
(B.8c)
φRH
(B.3a or B.3b)
β(fcm)
(B.4)
β(t0)
(B.5)
Notional creep coefficient φ0
(B.2)
βH
(B.8a or B.8b)
Coefficient to describe the development of creep with time after loading βc(t,t0)
(B.7)
the creep coefficient φ(t,t0)
(B.1)