For full functionality of this site it is necessary to enable JavaScript. Here are the instructions how to enable JavaScript in your web browser.

# Total shrinkage strain at an age t, εcs

## Eurocode 2 part 1-1: Design of concrete structures \$(document).ready(function () { var freeExample = \$("#freeExample").length; \$("#mainMenu li#nav-appCate, #mainMenu li#nav-appEC211").addClass("active"); var proUser = false === true || false === true || freeExample !== 0; if (!proUser) { \$('#Input input').keyup(function(){ \$('#AlertSubscribe').modal(); }); \$('#Input select').change(function(){ \$('#AlertSubscribe').modal(); }); }; var tempInput = \$("#tempInput").text(); if (tempInput != "") { \$("#Input").parent("form").deserialize(tempInput); if (proUser) { \$("#acceptBtn").trigger("click"); } }; });  3.1.4 (6) and B.2 (1)

The total shrinkage strain is composed of the drying shrinkage strain and the autogenous shrinkage strain:

 εcs = εcd + εca (3.8)

where:

The drying shrinkage strain folows from:

 εcd(t) = βds(t,ts)⋅kh⋅εcd,0 (3.9)

The autogenous shrinkage strain follows from:

 εca(t) = βas(t)⋅εca(∞) (3.11)

This application calculates the total shrinkage strain εcs from your inputs. Intermediate results will also be given.

Input
days
days
%
mm2
mm

Output
Mean compressive strength of concrete at 28 days fcm
MPa
Characteristic compressive strength of concrete fck
MPa
Class of cement
Notional size of the member h0
mm (3.10)
kh
Table 3.3
βds(t,ts)
(3.10)
αds1
§ B.2 (1)
αds2
§ B.2 (1)
βRH
(B.12)
Basic drying shrinkage strain εcd,0
(B.11)
Drying shrinkage strain εcd(t)
(3.9)
εca(∞)
(3.12)
βas(t)
(3.13)
Autogenous shrinkage strain εca(t)
(3.11)
the total shrinkage strain εcs
(3.8)