For full functionality of this site it is necessary to enable JavaScript. Here are the instructions how to enable JavaScript in your web browser.

# Calculation of deflections: the shrinkage curvature 1/rcs

## Eurocode 2 part 1-1: Design of concrete structures \$(document).ready(function () { var freeExample = \$("#freeExample").length; \$("#mainMenu li#nav-appCate, #mainMenu li#nav-appEC211").addClass("active"); var proUser = false === true || false === true || freeExample !== 0; if (!proUser) { \$('#Input input').keyup(function(){ \$('#AlertSubscribe').modal(); }); \$('#Input select').change(function(){ \$('#AlertSubscribe').modal(); }); }; var tempInput = \$("#tempInput").text(); if (tempInput != "") { \$("#Input").parent("form").deserialize(tempInput); if (proUser) { \$("#acceptBtn").trigger("click"); } }; });  7.4.3 (6)

The shrinkage curvature may be calculated as follows:

 1/rcs = εcs αe (S/I) (7.21)

where:

1/rcs
is the curvature due to shrinkage
εcs
is the free shrinkage strain
S
is the first moment of area of the reinforcement about the centroid of the section
I
is the second moment of area of the section
αe
is the effective modular ratio
αe = Es / Ec,eff

with:

Es
the design value of the modulus of elasticity of the reinforcing steel, see § 3.2.7 (4)
Ec,eff
the effective modulus of elasticity for concrete.

S and I should be calculated for the uncracked condition and the fully cracked condition, the final curvature being estimated by the application 7.4.3 (3).

This application calculates the shrinkage curvature 1/rcs from your inputs.

Input
GPa
GPa
mm3
mm4

Output
αe
the shrinkage curvature 1/rcs
mm-1 (7.21)