For full functionality of this site it is necessary to enable JavaScript. Here are the instructions how to enable JavaScript in your web browser.

# Method of analysis for second order effects, based on nominal curvature: the nominal second order moment M2

## Eurocode 2 part 1-1: Design of concrete structures \$(document).ready(function () { var freeExample = \$("#freeExample").length; \$("#mainMenu li#nav-appCate, #mainMenu li#nav-appEC211").addClass("active"); var proUser = false === true || false === true || freeExample !== 0; if (!proUser) { \$('#Input input').keyup(function(){ \$('#AlertSubscribe').modal(); }); \$('#Input select').change(function(){ \$('#AlertSubscribe').modal(); }); }; var tempInput = \$("#tempInput").text(); if (tempInput != "") { \$("#Input").parent("form").deserialize(tempInput); if (proUser) { \$("#acceptBtn").trigger("click"); } }; });  5.8.8.2 (3)

The nominal second order moment M2 is defined by:

 M2 = NEd e2 (5.33)

where:

NEd
is the design value of axial force
e2
is the deflection, e2 = (1/r) l02 / c

with

1/r
the curvature.
l0
the effective length, cf. 5.8.3.2
c
a factor depending on the curvature distribution.
For constant cross section, c = 10 is normally used. If the first order moment is constant, a lower value should be considered (8 is a lower limit, corresponding to constant total moment).

This application calculates the nominal second order moment M2 from your inputs.

Input
kN
m-1
m

Output
e2
m
the nominal second order moment M2
kNm (5.33)