For full functionality of this site it is necessary to enable JavaScript. Here are the instructions how to enable JavaScript in your web browser.

# Longitudinal reinforcement for pure torsional moment, ΣAsl

## Eurocode 2 part 1-1: Design of concrete structures \$(document).ready(function () { var freeExample = \$("#freeExample").length; \$("#mainMenu li#nav-appCate, #mainMenu li#nav-appEC211").addClass("active"); var proUser = false === true || false === true || freeExample !== 0; if (!proUser) { \$('#Input input').keyup(function(){ \$('#AlertSubscribe').modal(); }); \$('#Input select').change(function(){ \$('#AlertSubscribe').modal(); }); }; var tempInput = \$("#tempInput").text(); if (tempInput != "") { \$("#Input").parent("form").deserialize(tempInput); if (proUser) { \$("#acceptBtn").trigger("click"); } }; });  6.3.2 (3)

The required cross-sectional area of the longitudinal reinforcement for torsion ΣAsl may be calculated from:

 (ΣAsl⋅fyd) /uk = (TEd⋅cotθ) /(2 Ak) (6.28)

where:

TEd
is the applied design torsion
Ak
is the area enclosed by the centre-lines of the connecting walls, including inner hollow areas (Figure 6.11)
uk
is the perimeter of the area Ak
fyd
is the design yield stress of the longitudinal reinforcement, fyd = fyk/γS,
see § 2.4.2.4 (1), § 2.4.2.4 (2) for the values of γS,
see § 3.2.2 (3)P for the uper limit of fyk,
see Figure 3.8 for the design stress-strain diagrams of the reinforcing steel.
θ
is the angle of compression struts, see Figure 6.5 and § 6.2.3 (2).

This application calculates the longitudinal reinforcement for torsion ΣAsl from your inputs.

Input
kNm
cm2
cm
MPa
Output
the longitudinal reinforcement for torsion ΣAsl
cm2 (6.28)